令L
0
:y=0(起点x=2,终点x=0), 则∫
L
(ye
x
-e
-y
+y)dx+(xe
-y
+e
x
)dy=(
)(ye
x
-e
-y
+y)dx+(xe
-y
+e
x
)dy, 而∫
(ye
x
-e
-y
+y)dx+(xe
-y
+e
x
)dy =
dxdy=∫
0
2
dx∫
0
x(2-x)
dy=∫
0
2
x(2-x)dx=4/3,
(ye
x
-e
-y
+y)dx+(xe
-y
+e
x
)dy=∫
2
0
=dx=2, 于是∫
L
(ye
x
-e
-y
+y)dx+(xe
-y
+e
x
)dy=
