设f(x)在[0,1]三阶可导,且f(0)=f(1)=0.设F(x)=x 2 f(x),求证:在(0,1)内存在c,使得F''(c)=0.
【正确答案】正确答案:由于F(0)=F(1)=0,F(x)在[0,1]可导,则 ξ 1 ∈(0,1),F'(ξ 1 )=0.又 F'(x)=x 2 f'(x)+2xf(x), 及由F'(0)=0,F'(ξ 1 )=0,F'(x)在[0,1]可导,则 ξ 2 ∈(0,ξ)使得F''(ξ 2 )=0.又 F''(x)=x 2 f''(x)+4xf'(x)+2f(x), 及由F''(0)=F''(ξ 2 )=0,F''(x)在[0,1]可导,则
【答案解析】