设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y'+a
2
(x)y=f(x)的三个线性无关的解,则该方程的通解为( )
【正确答案】
D
【答案解析】解析:因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y"+a
1
(x)y'+a
2
(x)y=f(x)的三个线性无关解,所以φ
1
(x)一φ
3
(x),φ
2
(x)一φ
3
(x)为所对应齐次方程y"+a
1
(x)y'+a
2
(x)y=0的两个线性无关解。根据非齐次线性方程通解的结构,方程y"+a
1
(x)y'+a
2
(x)y=f(x)的通解为 C
1
[φ
1
(x)一φ
3
(x)]+C
2
[φ
2
(x)一φ
3
(x)]+φ
3
(x), 即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1一C
1
—C
2
或C
1
+C
2
+C
3
=1,故选D。