【正确答案】
D
【答案解析】[分析] 用初等行变换将矩阵B化为阶梯形矩阵
[*]
据此推得:
r(α1,α2,α3,α4)=3,所以α1,α2,α3,α4线性相关,故(A)不成立.
r(α1,α2,α3)=2≠r(α1,α2,α3,α4),所以线性方程组(α1,α2,α3)x=α4无解,即α4不能由α1,α2,α3线性表出,故(B)不成立.
r(α1,α2,α3)=2=r(α1,α2,α3,α5),所以线性方程组(α1,α2,α3)x=α5有解,且有无穷多解,即α5能由α1,α2,α3线性表出,有表示法无穷多,故(C)不成立.应选(D).