计算题

汤姆和约翰同住一套房间, 他们把收入的一部分花在食物、 衣服等私有物品上, 同时把一部分收入花在公共物品上, 如电冰箱、 电热器等。 汤姆的效用函数为 2Xr +Y, 约翰的效用函数为 XjY。 这里 Xr指的是汤姆花在私人物品上的收入, Xj是约翰花在私人物品上的收入,Y是他们分别花在公共物品上的费用, 他们两个共同花在私人物品和公共物品上的费用总和为 8000 美元/年。 要求:

问答题

汤姆在私人物品和公共物品之间的边际替代率为多少? 约翰在私人物品和公共物品之间的边际替代率为多少?

【正确答案】

已知汤姆的效用函数为 2Xr +Y, 令 d(2Xr +Y) =0, 可以求得: 汤姆在私人物品和公共物品之间的边际替代率为

同理可以求得约翰在私人物品和公共物品之间的边际替代率为

【答案解析】
问答题

写出一个方程式描述达到帕累托最优时两种物品数量的分配条件;

【正确答案】

物品消费达到帕累托最优的条件为汤姆和约翰在两种物品之间的边际替代率相等, 即 Y/Xj =2。

【答案解析】
问答题

假设汤姆和约翰分别在私人物品上花费 2000 美元, 然后把剩下的 4000 美元花在公共物品上, 这是否达到帕累托最优?

【正确答案】

由题意知, Xr =Xj =2000, Y=4000, 满足条件 Y/Xj =2, 故可以达到帕累托最优。

【答案解析】