结构推理
某有色溶液在分光光度计上重复测得五个透光度数据0.377,0.371,0.370,0.375,0.378。假定测量的不定误差与T的大小无关,对于溶液分别具有10/%,50/%和90/%的透光度。如果假定:
(1)绝对的不定误差是五个数据平均值的平均偏差的两倍:
(2)绝对的不定误差是五个数据的标准偏差;
(3)单个测量的绝对的不定误差是90/%的置信区间。分别计算测定浓度的相对误差。
(已知n=5时,t0.90=2.132)
【正确答案】(1)=(0.377+0.371+0.370+0.375+0.378)/5=0.374
===0.003
=2=0.006
=0.434′0.006/0.10lg0.10=±2.6/%
=0.434′0.006/0.50lg0.50=±1.7/%
=0.434′0.006/0.90lg0.90=±6.3/%
(2)S==
=3.57′10-3
=0.434′3.57′10-3/0.10lg0.10=±1.6/%
=0.434′3.57′10-3/0.50lg0.50=±1.0/%
=0.434′3.57′10-3/0.90lg0.90=±3.8/%
(3)m=±=0.374±2.132′0.0036/=0.374±0.0034
=0.434′0.0034/0.10lg0.10=±1.5/%
=0.434′0.0034/0.50lg0.50=±9.8/%
=0.434′0.0034/0.90lg0.90=±38/%
【答案解析】