【正确答案】正确答案:

先作正交矩阵Q,使得Q
-1
AQ是对角矩阵. 条件说明B的3个列向量都是A的特征向量,并且特征值都是0.由于B的秩大于1,特征值0的重数大于1.于是A的特征值为0,0,6.(tr(A)=6.) 求属于特征值0的两个单位正交特征向量: 对B的第1,2两个列向量α
1
=(1,0,1)
T
,α
2
=(2,一1,0)
T
作施密特正交化: η
1
=α
1
/∥α∥
1
=

(1,0,1)
T
,η
2
=β
2
/∥β
2
∥=

(1,一1,一1)
T
. 求属于特征值6的一个单位特征向量:属于特征值6的特征向量与α
1
,α
2
都正交,

即是方程组

的非零解,求出α
3
=(1,2,一1)
T
是属于6的一个特征向量,单位化 η
3
=α
3
/∥α
3
∥=

(1,2,-1)
T
. 记Q=(η
1
,η
2
,η
3
),则Q是正交矩阵,Q
-1
AQ=
