问答题 设函数f(x,y)=(x2+y)ex2y,求f'x(x,2x),f'y(x,2x)和
【正确答案】[解] 由
df(x,y)=ex2yd(x2+y)+(x2+y)ex2yd(x2y)
=ex2y(2x2dx+dy)+(x2+y)ex2y(2xydx+x2dy)
=ex2y[2x+2(x2+y)xy]dx+ex2y[1+(x2+y)x2]dy,可得
f'x(x,y)=ex2y[2x+2xy(x2+y)],
f'y(x,y)=ex2y[1+x2(x2+y)],所以
f'x(x,2x)=2(x+4x3+2x4)e2x3
f'y(x,2x)=(1+2x3+x4)e2x3,也可用链式法则计算
【答案解析】