问答题
设函数f(x,y)=(x
2+y)e
x2y,求f'
x(x,2x),f'
y(x,2x)和
【正确答案】[解] 由
df(x,y)=ex
2yd(x
2+y)+(x
2+y)e
x2yd(x
2y)
=e
x2y(2x
2dx+dy)+(x
2+y)e
x2y(2xydx+x
2dy)
=e
x2y[2x+2(x
2+y)xy]dx+e
x2y[1+(x
2+y)x
2]dy,可得
f'
x(x,y)=e
x2y[2x+2xy(x
2+y)],
f'
y(x,y)=e
x2y[1+x
2(x
2+y)],所以
f'
x(x,2x)=2(x+4x
3+2x
4)e
2x3,
f'
y(x,2x)=(1+2x
3+x
4)e
2x3,也可用链式法则计算

【答案解析】