设A,B,A+B,A -1 +B -1 均为n阶可逆矩阵,则(A -1 +B -1 ) -1 =
【正确答案】 C
【答案解析】解析:(A -1 +B -1 ) -1 =(EA -1 +B -1 ) -1 =(B -1 BA -1 +B -1 ) -1 =[B -1 (BA -1 +AA -1 )] -1 =[B -1 (B+A)A -1 ] -1 =(A -1 ) -1 (B+A) -1 (B -1 ) -1 =A(A+B) -1 B. 故应选(C).