【正确答案】
C
【答案解析】可用反证法证明之.必要性:假设有一向量,如αs可由α1,α2,…,αs-1线性表出,则α1,α2,…,αs线性相关,这和已知矛盾,故任一向量均不能由其余向量线性表出.充分性:假设α1,α2,…,αs线性相关至少存在一个向量可由其余向量线性表出,这和已知矛盾,故α1,α2,…,αs线性无关.A对任何向量组都有0α1+0α2+…+0αs=0的结论.B必要但不充分,如α1=[0,1,0]T,α2=[1,1,0]T,α3=[1,0,0]T任意两个向量线性无关,但α1,α2,α3线性相关.D必要但不充分,如上例α1+α2+α3≠0,但α1,α2,α3线性相关.