已知A=
【正确答案】正确答案:A的特征多项式为

=(λ一2n+1)(λ一n+1)
n-1
, 则A的特征值为λ
1
=2n一1,λ
2
=n—1,其中λ
2
=n一1为n一1重根。 当λ
1
=2n—1时,解齐次方程组(λ
1
E一A)x=0,对系数矩阵作初等变换,有

得到基础解系α
1
=(1,1,…,1)
T
。 当λ
2
=n一1时,齐次方程组(λ
2
E一A)x=0等价于x
1
+x
2
+…+x
n
=0,得到基础解系 α
2
=(一1,1,0,…,0)
T
,α
3
=(一1,0,1,…,0)
T
,…,α
n
=(一1,0,0,…,1)
T
, 则A的特征向量是k
1
α
1
和k
2
α
2
+k
3
α
3
+…+k
n
α
n
,其中k
1
≠0,k
2
,k
3
,…,k
n
不同时为零。

【答案解析】