确定常数a和b的值,使f(x)=x-(a+be x2 )sinx当x→0时是x的5阶无穷小量.
【正确答案】正确答案:利用e x2 =1+x 2 + +o(x 5 ),sinx=x- +o(x 6 ),可得 f(x)=x-[a+b+bx 2 + x 4 +o(x 5 )] +o(x 6 )] =(1-a-b)x+ x 5 +o(x 5 ). 不难看出当1-a-b=0与 -b=0同时成立f(x)才能满足题设条件.由此可解得常数a= ,并且得到f(x)=
【答案解析】