问答题
设α
1
=(1,3,5,—1)
T
,α
2
=(2,7,α,4)
T
,α
3
=(5,17,—1,7)
T
.
问答题
若α
1
,α
2
,α
3
线性相关,求a.
【正确答案】正确答案:α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3. (α
1
,α
2
,α
3
)=

【答案解析】
问答题
当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
.
【正确答案】正确答案:与α
1
,α
2
,α
3
都正交的非零向量即为齐次方程组的非零解,

解此方程组:

【答案解析】
问答题
设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量.
【正确答案】正确答案:只用证明α
1
,α
2
,α
3
,α
4
线性无关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关,从而α可以用α
1
,α
2
,α
3
,α
4
线性表示. 方法:由(Ⅱ)知,当a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示. 用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设α
4
=c
1
α
1
+c
2
α
2
+c
3
α
3
,则 (α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
)=0,得α
4
=0,与α
4
是非零向量矛盾.
【答案解析】