选择题
4.
[20l0年] 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).
A、
秩(A)=m,秩(B)=m
B、
秩(A)=m,秩(B)=n
C、
秩(A)=n,秩(B)=m
D、
秩(A)=n,秩(B)=n
【正确答案】
A
【答案解析】
利用关于矩阵秩的性质即命题2.2.3.1(2)和命题2.2.3.1(10)求之.
因AB=E,由命题2.2.3.1(10)有秩(A),秩(B)≥秩(AB)=秩(E)=m.又A为m×n矩阵,由命题2.2.3.1(2)知秩(A)≤m,同理,因B为n×m矩阵,有秩(B)≤m.因而
m≤秩(A)≤m, m≤秩(B)≤m,
则秩(A)=m,秩(B)=m.仅(A)入选.
提交答案
关闭