解答题
25.设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
【正确答案】由Aα1=α1得(A-E)α1=0;
由Aα2=α1+α2得(A-E)α2=α1;由Aα3=α2+α3得(A-E)α3=α2,
令k1α1+k2α2+k3α3=0, (1)
(1)两边左乘A-E得
k2α1+k3α2=0, (2)
(2)两边左乘A-E得k3α1=0,因为α1≠0,所以k3=0,代入(2),(1)得k1=0,k2=0,
故α1,α2,α3线性无关.
【答案解析】