填空题
设y=e
x
(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为
1
。
1、
【正确答案】
1、正确答案:y"一2y'+2y=0
【答案解析】
解析:由通解的形式可知,特征方程的两个根是r
1
,r
2
=1±i,因此特征方程为 (r—r
1
)(r—r
2
)=r
2
一(r
1
+r
2
)r+r
1
r
2
=r
2
一2r+2=0, 故所求微分方程为 y"一2y'+2y=0。
提交答案
关闭