解答题 15.设y'=arctan(x-1)2,y(0)=0,求∫01y(x)dx.
【正确答案】01y(x)dx=xy(x)∫01-∫01xarctan(x-1)2dx
=y(1)-∫01(x-1)arctan(x-1)2d(x-1)-∫01arctan(x-1)2dx
=01arctan(x-1)2d(x-1)2=01arctantdt
=(tarctant|01-∫01
【答案解析】