【正确答案】解法1引入中间变量,分层处理.记Y
1=X
1X
4,Y
2=X
2X
3,易见,Y
1,Y
2独立同分布.由Y
1=0,1,则
P{Y
1=1}=P{X
1=1,X
4=1}=P{X
1=1}P{X
4=1}=0.16,
P{Y
1=0}=1-P{Y
1=1}=0.84,
即有

又X=Y
1-Y
2=-1,0,1,则
P{X=-1}=P{Y
1=0,Y
2=1}=P{Y
1=0}P{Y
2=1}=0.84×0.16=0.1344,
P{X=1}=P{Y
1=1,Y
2=0}=P{Y
1=1}P{Y
2=0}=0.84×0.16=0.1344,
P{X=0}=1-P{X=-1}-P{X-1}=1-2×0.1344=0.7312.
所以行列式的概率分布为

解法2直接利用计算离散型随机变量概率分布的三步法.
由于X
1,X
2,X
3,X
4相互独立且同服从0—1分布,易知X=-1,0,1,且
P{X=-1}=P{X=1},
P{X=-1}=P{{{X
1=0}∪{X
4=0}}∩{{X
2=1}∩{X
3=1}}}
=P{{X
1=0}∪{X
4=0}}P{X
2=1}P{X
3=1}
=(1-0.4×0.4)×0.4×0.4=0.1344,
P{X=1}=P{X=-1}=0.1344,
P{X=0}=1-P{X=-1}-P{X=1}=0.7312.
所以行列式X的概率分布为
