【正确答案】[详解] (1)由已知,有
|f
n+1(x
0)-f
n(x
0)|=f[f
n(x
0)]-f[f
n-1(x
0)]|≤k|f
n(x
0)-f
n-1(x
0)|≤…≤k
n-1|f[f(x
0)]-f(x
0)|≤k
n|f(x
0)-x
0|.
∵当0<k<1时,

收敛,

收敛,
即

绝对收敛.
(2)S
n=[f
2(x
0)-f
1(x
0)]+[f
3(x
0)-f
2(x
0)]+…+[f
n+1(x
0)-f
n(x
0)]
=f
n+1(x
0)-f
1(x
0),
由(1)知

存在,∴

【答案解析】[分析] 由已知条件可得|fn+1(x0)-fn(x0)|≤kn|f(x0)-x0|.
[评注] [*]