已知abc不等于0,且a+b+c=0,则代数式a^2/bc+(b^2/ac)+(c^2+ab)的值为( )
3
2
1
0
a^2/bc+(b^2/ac)+(c^2/ab)=a^3/abc+(b^3/abc)+(c^3/abc)=(a^3+b^3+c^3)/abc=[(a^3+b^3+c^3-3abc)+3abc]/abc=(a^3+b^3+c^3-3abc)/abc+3=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)/abc+3=0/abc+3=3选A