【正确答案】正确答案:由Aξ
1
=λ
1
ξ
1
,Aξ
2
=λ
2
ξ
2
,有A(ξ
1
+ξ
2
)=Aξ
1
+Aξ
2
=λ
1
ξ
1
+λ
2
ξ
2
. 若ξ
1
+ξ
2
是A的特征向量,则应存在数λ,使A(ξ
1
+ξ
2
)=λ(ξ
1
+ξ
2
) =λξ
1
+λξ
2
,从而λξ
1
+λξ
2
=λ
1
ξ
1
+λ
2
ξ
2
,即(λ—λ
1
)ξ
1
+(λ—λ
2
)ξ
2
=0. 因为ξ
1
,ξ
2
线性无关,所以λ=λ
1
=λ
2
,这与λ
1
≠λ
2
矛盾. 因此,ξ
1
+ξ
2
不是A的特征向量.
【答案解析】解析:本题主要考查矩阵特征值、特征向量的概念和属于不同特征值的特征向量线性无关这一知识点.利用反证法可证明本题.