问答题
某系统由两个相互独立工作的元件串联而成,只要有一个元件不工作,系统就不工作,设第i个元件工作寿命为X
i
,已知X
i
~E(λ
i
),λ
i
>0,i=1,2.试求:
(1)该系统的工作寿命X的概率密度f(x);
(2)证明:对t,s>0有P{X>t+s|X>t}=P{X>s}.
【正确答案】正确答案:(1)当x>0时, F(x)=P{X≤x}=P{min{X
1
,X
2
}≤x}=1一P{min{X
1
,X
2
}>x} =1一P{X
1
>x,X
2
>x}=1一P{X
1
>x}P{X
2
>x}

当x≤0时,显然F(x)=0,f(x)=0.

(2)记λ=λ
1
+λ
2
,P{X>x}=∫
x
+∞
λe
-λt
dt=e
-λx
,x>0.当t,s>0时,

【答案解析】