设α
1
,α
2
,…,α
n
为n个n维列向量,证明:α
1
,α
2
,…,α
n
线性无关的充分必要条件是
【正确答案】
正确答案:令A=(α
1
,α
2
,…,α
n
),A
T
A=
,r(A)=r(A
T
A),向量组α
1
,α
2
,…,α
n
线性无关的充分必要条件是r(A)=n,即r(A
T
A)=n或|A
T
A|≠0,从而α
1
,α
2
,…,α
n
线性无关的充分必要条件是
【答案解析】
提交答案
关闭