【正确答案】正确答案:由已知 ∫
0
a
f(x)dx=∫
0
a
f(x)d(x-a) =[(x一a)f(x)]|
0
a
一∫
0
a
(x一a)f
'
(x)dx =af(0)一∫
0
a
(x一a)f
'
(x)dx。 因为f
'
(x)连续,所以f
'
(x)在[0,a]上存在最小值m和最大值M,则 m(a一x)≤(a一x)f
'
(x)≤M(a一x), 故

≤∫
0
a
(a一x)f
'
(x)dx≤

,再由介值定理可知,至少存在一点ξ∈[0,a],使得 ∫
0
a
(a-x)f
'
(x)dx=

f
'
(x),于是∫
0
a
f(x)dx=af(0)+
