单选题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),已知齐次方程组AX=0的通解为c(1,-2,1,0)
T
,c任意,则下列选项中不对的是( )。
【正确答案】
D
【答案解析】解析:条件说明α
1
-2α
2
+α
3
=0,并且r(α
1
,α
2
,α
3
,α
4
)=3。显然α
1
,α
2
,α
3
线性相关,并且r(α
1
,α
2
,α
3
)=2。α
3
可用α
1
,α
2
线性表示,因此r(α
1
,α
2
)=r(α
1
,α
2
,α
3
)=2。α
1
,α
2
线性无关。答案A和答案B都对。r(α
1
,α
2
,α
4
)=r(α
1
,α
2
,α
3
,α
4
)=3。答案C对,答案D错。