问答题 设a和b是格(A,≤)中的两个元素,证明:
【正确答案】(充分性)若a∧b=b,则a∨b=a.事实上,由格的吸收律有
   a∨b=a∨(a∧b)=a.
   (必要性)若a∨b=a,则a∧b=b.事实上,由格的吸收律有
   a∧b=(a∨b)∧b=b.
【答案解析】
【正确答案】用反证法(充分性)  若a∧b<b和a∧b<a,则a与b是不可比的.
   事实上,若a与b是可比的,则a∧b=b或a∧b=a.与假设矛盾,故充分性得证.
   (必要性)若a与b是不可比的,则a∧b<b和a∧b<a.
   事实上,若a∧b=b或a∧b=a,则a≤b或b≤a,与假设矛盾,故必要性得证.
【答案解析】