问答题
已知A是3×4矩阵,秩r(A)=1,若α
1
=(1,2,0,2)
T
,α
2
=(1,-1,a,5)
T
,α
3
=(2,a,-3,-5)
T
,α
4
=(-1,-1,1,a)
T
线性相关,且可以表示齐次方程组Ax=0的任一解,求Ax=0的基础解系.
【正确答案】
【答案解析】
解:因为A是3×4矩阵,且秩r(A)=1,所以齐次方程组Ax=0的基础解系有n-r(A)=3个解向量.又因α
1
,α
2
,α
3
,α
4
线性相关,且可以表示Ax=0的任一解,故向量组α
1
,α
2
,α
3
,α
4
的秩必为3,且其极大线性无关组就是Ax=0的基础解系.由于
提交答案
关闭