设c
1
,c
2
,…,c
n
均为非零实常数,A=(a
ij
)
n×n
为正定矩阵,令b
ij
=a
ij
c
i
c
j
(i,j=1,2,…,n),矩阵B=(b
ij
)
n×n
,证明矩阵B为正定矩阵.
【正确答案】正确答案:由b
ji
=b
ij
,知B对称.若χ
1
,χ
2
,…,χ
n
不全为0,则c
1
χ
1
,c
2
χ
2
,…,c
n
χ
n
不全为零,此时,(χ
1
,χ
2
,…,χ
n
)B(χ
1
,χ
2
,…,χ
n
)
T
=

accχχ=

【答案解析】