【答案解析】解析:本题考查行列式按行(列)展开定理、矩阵与其伴随矩阵的行列式的关系.要求考生应用行列式的性质,展开定理、矩阵与其伴随矩阵的行列式的关系计算行列式.由|A
T
|=|A
*
|和|A
*
|=|A|
3-1
=|A|
2
,得|A|
2
=|A|,即|A|(|A|—1)=0,从而|A|=0或|A|=1.将|A|按第一行展开,再由A
*
=A
T
知a
ij
=A
ij
,得|A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=a
12
2
+a
12
2
+a
13
2
=3a
11
2
>0,于是得|A|=1,即3a
11
2
=1,故
