填空题   设X,Y相互独立且都服从(0,2)上的均匀分布,令Z=min(X,Y),则P(0<Z<1)=______.
 
【正确答案】
【答案解析】由X,Y在(0,2)上服从均匀分布得 因为X,Y相互独立,所以 FZ(z)=P(Z≤z)=1-P(Z>z)=1-P{min(X,Y)>z}=1-P(X>z,Y>z) =1-P(X>z)P(Y>z)=1-[1-P(X≤z)][1-P(Y≤z)] =1-[1-FX(z)][1-FY(z)] 于是P(0<Z<1)=FZ(1)-FZ(0)=