填空题
设f(x)连续且f(x)≠0,又设f(x)满足f(x)=∫
0
x
f(z—t)dt+∫
0
1
f
2
(t)dt,则f(x)= 1.
【正确答案】
1、正确答案:[*]
【答案解析】解析:f(x)=∫
0
x
f(x—t)dt+∫
0
1
f
2
(t)dt(第—个积分令x—t=u) =一∫
x
0
f(u)du+∫
0
1
f
2
(t)dt=∫
0
x
f(u)du+∫
0
1
f
2
(t)dt. 令∫
0
1
f
2
(t)dt=a,于是 f(x)=∫
0
x
f(u)du+a,f'(x)=f(x),f(0)=a, 解得f(x)=Ce
x
.由f(0)=a,得f(x)=ae
x
,代入∫
0
1
f
2
(t)dt=a中,得 a=∫
0
1
f
2
(t)dt=a
2
∫
0
1
e
2t
dt=

(e
2
—1). 解得a=0(舍去),a
