设3维向量组α
1
,α
2
线性无关,β
1
,β
2
线性无关.
问答题
证明存在非零3维向量ξ,ξ既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出;
【正确答案】正确答案:因α
1
,α
2
,β
1
,β
2
均是3维向量,4个3维向量必线性相关.由定义知,存在不全为零的数k
1
,k
2
,λ
1
,λ
2
,使得 k
1
α
1
+ k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 得 k
1
α
1
+ k
2
α
2
=-λ
1
β
1
-λ
2
β
2
. 取 ξ= k
1
α
1
+ k
2
α
2
=-λ
1
β
1
-λ
2
β
2
, 若ξ=0,则k
1
α
1
+ k
2
α
2
=-λ
1
β
1
-λ
2
β
2
=0. 因α
1
,α
2
线性无关,β
1
,β
2
也线性无关,从而得出k
1
=k
2
,且λ
1
=λ
2
,这和4个3维向量必线性相关矛盾,故ξ≠0.ξ即为所求的既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出的非零向量.
【答案解析】
问答题
若α
1
=(1,-2,3)
T
,α
2
=(2,1,1)
T
,β
1
= (-2,1,4)
T
,β
2
=(-5,-3,5)
T
.求既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出的所有非零向量ξ.
【正确答案】正确答案:设ξ= k
1
α
1
+ k
2
α
2
=-λ
1
β
1
-λ
2
β
2
,则得齐次线性方程组是k
1
α
1
+ k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 将α
1
,α
2
,β
1
,β
2
合并成矩阵,并作初等行变换.得

解得 (k
1
,k
2
,λ
1
,λ
2
)=k(-1,2,-1,1). 故既可由α
1
,α
2
线性表出,又可以β
1
,β
2
线性表出的所有非零向量为

其中k是任意的非零常数 或

【答案解析】