问答题 假定某经济社会的消费函数C=30+0.8Yd,净税收即总税收减去政府转移支付后的金额TN=50,投资I=60,政府购买性支出G=50,净出口即出口减进口以后的余额为NX=50-0.05Y,求:(1)均衡收入;(2)在均衡收入水平上净出口余额;(3)投资乘数;(4)投资从60增至70时的均衡收入和净出口余额;(5)当净出口从NX=50-0.05Y变为NX=40-0.05Y时的均衡收入和净出口余额。
【正确答案】(1)可支配收入:Yd=Y-TN=Y-50消费:C=30+0.8(Y-50)=30+0.8Y-40=0.8y-10均衡收入:Y=C+I+G+NX=0.8Y-10+60+50+50-0.05Y=0.75Y+150解得Y=150/0.25=600,即均衡收入为600。 (2)净出口余额:NX=50-0.05Y=50-0.05×600=20(3)投资乘数ki=1/1-0.8+0.05=4。(4)投资从60增加到70时,有Y=C+I+G+NX=0.8Y-10+70+50+50-0.05Y=0.75Y+160解得Y=160/0.25=640,即均衡收入为640。净出口余额:NX=50-0.05Y=50-0.05×640=50-32=18(5)净出口函数从NX=50-0.05Y变为NX=40-0.05Y时的均衡收入为Y=C+I+G+NX=0 8Y-10+60+50+40-0.05Y=0.75Y+140解得γ=140/0.25=560,即均衡收入为560。净出口余额:NX=40-0.05Y=40-0.05×560=40-28=12
【答案解析】