问答题
设有A
m×n
,B
n×m
,已知E
n
-AB可逆,证明E
n
-BA可逆,且(E
n
-BA)
-1
=E
n
+B(E
n
-AB)
-1
A
【正确答案】
[证明] (E
n
-BA)[E
n
+B(E
n
-AB)
-1
A]
=E
n
-BA+B(E
n
-AB)
-1
A-BAB(E
n
-AB)
-1
A
=E
n
-BA+(B-BAB)(E
n
-AB)
-1
A
=E
n
-BA+B(E
n
-AB)(E
n
-AB)
-1
A
=E
n
-BA+BA=E
n
故E
n
-BA可逆,且(E
n
-BA)
-1
=E
n
+B(E
n
-AB)
-1
A.
【答案解析】
[解析] 只需证[E
n
BA][E
n
+B(E
n
-BA)
-1
A]=E.
提交答案
关闭