【正确答案】正确答案:由题意,当—π<x <0时,法线均过原点,所以有y=

,即ydy=—xdx,得y
2
=—x
2
+C。 又

代入y
2
=一x
2
+C得C=π
2
,从而有x
2
+y
2
=π
2
。 当0≤x<π时,y"+y+x=0,得其对应齐次微分方程y"+y=0的通解为 y
*
=C
1
cosx+C
2
sinx 设其特解为y
1
=Ax+B,则有0+Ax+B+x=0,得A=—1,B=0,故y
1
=—x是方程的特解,因此y"+y+x=0的通解为y=C
1
cosx+C
2
sinx—x。 因为y=y(x)是(—π,π)内的光滑曲线,故y在x=0处连续且可导,所以由已知得 y |
x=0
=π,y"|
x=0
=0, 故得C
1
=π,C
2
=1,所以
