【正确答案】
【答案解析】2
[解析] 已知X
i
~P(λ
i
)且X
1
与X
2
相互独立,所以EX
i
=DX
i
=λ
i
(i=1,2),E(X
1
+X
2
)
2
=E(X
1
2
+2X
1
X
2
+X
2
2
)=EX
1
2
+2EX
1
EX
2
+EX
2
2
=λ
1
+λ
1
2
+2λ
1
λ
2
+λ
2
+λ
2
2
=λ
1
+λ
2
+(λ
1
+λ
2
)
2
.为求得最终结果我们需要由已知条件计算出λ
1
+λ
2
.
因为 P{X
1
+X
2
>0}=1-P{X
1
+X
2
≤0}=1-P{X
1
+X
2
=0}
=1-P{X
1
=0,X
2
=0}=1-P{X
1
=0}P{X
2
=0}
=1-e
-λ1
·e
-λ2
=1-e
-(λ1+λ2)
=1-e
-1
所以 λ
1
+λ
2
=1.
故 E(X
1
+X
2
)
2
=(λ
1
+λ
2
)+(λ
1
+λ
2
)
2
=2.