解答题 20.设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1.
(I)求方程组Aχ=0的通解.
(Ⅱ)求二次型f(χ1,χ2,χ3).
【正确答案】(Ⅰ)A是二次型的对应矩阵,故AT=A,由(2E-A)χ=0有通解χ=Kξ1=k(-1,1,1)T,知A有特征值λ1=2,且A的对应于λ1=2的线性无关的特征向量为ξ1=(-1,1,1)T
由于r(A)=1,故知λ=0是A的二重特征值.Aχ=0的非零解向量即是A的对应于λ=0的特征向量.
设λ2=λ3=0所对应的特征向量为ξ=(χ1,χ2,χ3)T,由于实对称矩阵不同特征值对应的特征向量相互正交,故ξ与ξ1相互正交.
由ξ1Tξ=-χ1+χ2+χ3=0,解得ξ2=(1,1,0)T,ξ3=(1,0,1)T
故方程组Aχ=0的通解为k2ξ2+k3ξ3,k2,k3为任意常数.
(Ⅱ)求二次型即是求其对应矩阵.
P=(ξ1,ξ2,ξ3)=为可逆矩阵,且P-1

故二次型为f(χ1,χ2,χ3)=
【答案解析】