问答题 设某种元件的寿命为随机变量且服从指数分布,这种元件可用两种方法制得,所得元件的平均寿命分圳为100和150(小时),而成本分别为c、和2c元,如果制得的元件寿命不超过200小时,则须进行加工,费用为100元,为使平均费用较低,问c取值时,用第2种方法较好?
【正确答案】正确答案:记用第一、第二种方法制得的元件的寿命分别为X、Y,费用分别为ξ、η,则知X、Y的概率密度分别为: 且P(X≤200)= =1-e -2 , P(Y≤200)= ∴Eξ=(c+100)P(X≤200)+c.P(X>200)=c+100p(X≤200),Eη=(2c+100)P(Y≤200)+2cP(y>200)=2c+100P(Y≤200), 于是Eη-Eξ=c+100.[P(Y≤200)-P(X≤200)]=c+100(e -2 ), 可见c<100(
【答案解析】