【正确答案】正确答案:如图6.1,设动直线MN上各点的横坐标为x,由题设知 S=∫
0
x
f(t)dt, |P
1
P
2
|=e
x
一1一f(x). 于是,函数f(x)满足方程∫
0
x
f(t)dt=e
x
一1一f(x).

由f(x)及e
x
连续知变上限定积分∫
0
x
f(t)dt可导,从而f(x)可导.将上述方程两端对x求导并令x=0,得 f(x)=e
x
—f'(x),f(0)=0(与题设一致) 又因f(0)=0,于是f(x)是一阶线性方程y'+y=e
x
满足初始条件y(0)=0的特解.解之即得 f(x)=
