设A是n(n≥3)阶矩阵,证明:(A
*
)
*
=|A|
n-2
A.
【正确答案】正确答案:(A
*
)
*
A
*
=|A
*
|E=|A|
n-1
E,当r(A)=n时,r(A
*
)=n,A
*
=|A|A
-1
,则(A
*
)
*
A
*
=(A
*
)
*
|A|A
-1
=|A|
n-1
E,故(A
*
)
*
=|A|
n-2
A.当r(A)=n一1时,|A|=0,r(A
*
)=1,r[(A
*
)
*
]=0,即(A
*
)
*
=0,原式显然成立.当r(A)<n—1时,|A|=0,r(A
*
)=0,(A
*
)
*
=0,原式也成立.
【答案解析】