设向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,且 β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s一1
=α
s一1
+α
s
,β
s
=α
s
+α
1
,讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
【正确答案】
正确答案:设x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0,即 (x
1
+x
s
)α
1
+(x
1
+x
2
)α
2
+…+(x
s一1
+x
s
)α
s
=0.
【答案解析】
提交答案
关闭