设当x≥0时f(x)有一阶连续导数,且满足 f(x)=一1+x+2∫ 0 x (x一t)f(t)f'(t)dt,求f(x).
【正确答案】正确答案:在原方程中,令x=0,得f(0)=一1.将原方程化为 f(x)=一1+x+2x∫ 0 x f(t)f'(t)dt一2∫ 0 x tf(t)f'(t)dt, 上式两边对x求导得 f'(x)=1+2∫ 0 x f(t)f'(t)dt+2xf(x)f'(x)一2xf(x)f'(x)=1+2∫ 0 x f(t)f'(t)dt. 从而有 f'(x)=1+2∫ 0 x f(t)f'(t)dt=1+∫ 0 x d[f 2 (t)]=1+f 2 (x)一f 2 (0)=f 2 (x).
【答案解析】