(1998年)已知α
1
=[1,4,0,2]
T
,α
2
=[2,7,1,3]
T
,α
3
=[0,1,-1,a]
T
,β=[3,10,6,4]
T
,问:
(1)a,b取何值时,β不能由α
1
,α
2
,α
3
线性表示?
(2)a,b取何值时,β可由α
1
,α
2
,α
3
线性表示?并写出此表示式.
【正确答案】正确答案:考虑线性方程组(α
1
,α
2
,α
3
)χ=β,其中χ=(χ
1
,χ
2
,χ
3
)
T
,对其增广矩阵

=[α
1
α
2
α
3
β]作初等行变换:

所以(1)当b≠2时,方程组无解,此时β不能由α
1
,α
2
,α
3
线性表示;. (2)当b=2且a≠1时,r(A)=r(

)=3,方程组有唯一解: χ=(χ
1
,χ
2
,χ
3
)
T
=(-1,2,0)
T
, 于是β可唯一表示为β=-α
1
+2α
2
; (3)当b=2且a=1时,r(A)=r(

【答案解析】