已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1.证明: (1)存在ξ∈(0,1)使得f(ξ)=1—ξ; (2)存在两个不同的点η,ζ∈(0,1)使得f"(η)f"(ζ)=1.
【正确答案】正确答案:(1)令F(x)=f(x)-1+x,则F(x)在[0.1]上连续,且F(0)=-1<0,F(1)=1>0,于是由介值定理知,存在ξ∈(0,1)使得F(∈)=0,即f(ξ)=1-ξ. (2)在[0,ξ]和[ξ,1]上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得

于是

【答案解析】解析:(1)显然用闭区间上连续函数的介值定理;(2)为双介值问题,可考虑用拉格朗日中值定理,但应注意利用(1)的结论.