单选题
设微分方程(1+x
2
)y'-2xy=x满足y(0)=1的特解是y
*
(x),则
=
A.
. B.
. C.
. D.
A
B
C
D
【正确答案】
A
【答案解析】
[解析] 用[*]同乘方程两端即得 [*] 即[*],积分可得方程的通解是 [*] 从而[*],令y(0)=1可确定常数[*].于是所求特解[*]-[*].求定积分可得 [*] 故应选(A).
提交答案
关闭