计算题
18.
已知随机变量X,Y相互独立,且都服从泊松分布,又知EX=2,EY=3,求E[(X-Y)
2
].
【正确答案】
根据泊松分布的参数和其数字特征的关系,由EX=2,EY=3知,X,Y的分布参数分别为λ
1
=2,λ
2
=3,从而知方差DX=2,DY=3.
又根据随机变量的数学期望和方差的性质,由于X,Y相互独立,于是有
E(X-Y)=EX-EY=-1,D(X-Y)=DX+DY=5,
从而得
E[(X-Y)
2
]=D(X-Y)+[E(X-Y)]
2
=5+1=6.
【答案解析】
提交答案
关闭