设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
(1)求A的特征值和特征向量;
(2)求可逆P,使得P
-1
AP=A.
【正确答案】正确答案:(1)设 (E+αβ
T
)ξ=λξ. ① 左乘β
T
,β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ, 若β
T
ξ≠0,则λ=1+β
T
α=3;若β
T
ξ=0,则由①式,λ=1. λ=1时,(E-A)X=-αβ
T
X=-αβ
T
X=
[b
1
,b
2
,…,b
n
]X=0, 即[b
1
,b
2
,…,b
n
]X=0,因α
T
β=2,故α≠0,β≠0,设b
1
≠0,则 ξ
1
=[b
2
,-b
1
,0,…,0]
T
,ξ
2
=[b
3
,0,-b
1
,0]
T
,…,ξ
n-1
=[b
n
,0,…,0,-b
1
]
T
; λ=3时,(3E-A)X=(2E-αβ
T
)X=0,ξ
n
=α=[a
1
,a
2
,…,a
n
]
T
(2)取 P=[ξ
1
,ξ
2
,…,ξ
n-1
,ξ
n
]=
P
-1
AP=