问答题 设f(x)对一切x 1 ,x 2 满足f(x 1 +x 2 )=f(x 1 )+f(x 2 ),并且f(x)在x=0处连续,证明:函数f(x)在任意点x 0 处连续.
【正确答案】正确答案:已知f(x 1 +x 2 )=f(x 1 )+f(x 2 ),令x 2 =0,则f(x 1 )=f(x 1 )+f(0),可得f(0)=0,又f(x)在x=0处连续,则有 而f(x 0 +△x)一f(x 0 )=f(x 0 )+f(△x)一f(x 0 )=f(△x),两边取极限得到
【答案解析】