单选题
设n阶矩阵A的伴随矩阵A
*
≠O,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系______。
A、
不存在
B、
仅含一个非零解向量
C、
含有两个线性无关的解向量
D、
含有三个线性无关的解向量
【正确答案】
B
【答案解析】
由A*≠O可知,A*中至少有一个非零元素,由伴随矩阵的定义可得矩阵A中至少有一个n-1阶子式不为零,再由矩阵秩的定义有r(A)≥n-1。又因Ax=b有互不相等的解,知其解存在且不唯一,故有r(A)<n,从而r(A)=n-1。因此对应的齐次线性方程组的基础解系仅含一个非零解向量。故本题选B。
提交答案
关闭