单选题   设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系______。
 
【正确答案】 B
【答案解析】由A*≠O可知,A*中至少有一个非零元素,由伴随矩阵的定义可得矩阵A中至少有一个n-1阶子式不为零,再由矩阵秩的定义有r(A)≥n-1。又因Ax=b有互不相等的解,知其解存在且不唯一,故有r(A)<n,从而r(A)=n-1。因此对应的齐次线性方程组的基础解系仅含一个非零解向量。故本题选B。