单选题 设f(x)定义(-∞,+∞)上,在点x=0连续,且满足条件f(x)=f(sinx),则f(x)在(-∞,+∞)上 ______
【正确答案】 D
【答案解析】[解析] 记u 1 =sinu 0 ,u k+1 =sinu k ,k=1,2,….
u 0 ∈(-∞,+∞),k=1,2,….
f(u 0 )=f(sinu 0 )=f(u 1 )=f(sinu 1 )=f(sinu 2 )=…=f(sinu k )=f(u k+1 ),即对 u 0 ∈(-∞,+∞)都有f(u 0 )=f(u n ),n=1,2,…,成立.
由于数列u k ,k=1,2,…单调减且有极限 又f(x)在点x=0连续,所以
u 0 ∈(-∞,+∞),